++++++++++++++++
التشبيه المحتمل هو ذلك مع العشروني المبتور(Truncated icosahedron). علما بأن العشروني المقطوع هو متعدد وجوه مكون من 32 شكلا: 20 سداسي و 12 خماسي.
![]() |
Clathrus ruber |
![]() |
العشروني المبتور |
![]() |
Clathrus ruber |
![]() |
العشروني المبتور |
![]() |
Packing Different Circles on a Spherical Surfaceho utilizzato le capacità di modellazione 3D di AutoCAD combinate con i principi della geometria descrittiva e delle trasformazioni proiettive per determinare la posizione e la forma apparente (in proiezione) di questi cerchi sulla superficie sferica. I cerchi in questo caso hanno dimensioni diverse.È un ottimo esempio di come i concetti classici della geometria descrittiva trovino applicazione nella grafica computerizzata e nella modellazione digitale |
![]() |
Impacchettamento di una cupola sferica con simmetria nello stesso quartile |
![]() |
تم الحصول على نتيجة النمذجة ثلاثية الأبعاد من خلال تطبيق مفاهيم الهندسة الوصفية في برنامج اوتوكاد. تُظهر الصورة محاولة مثيرة للاهتمام لتعبئة السطح الكروي باستخدام التناظر المركزي لدوائر مختلفة. على وجه التحديد، تشغل ثلاث شرائح زوالية متجاورة ربعًا كاملاً من الكرة. الدوائر الاولية مختلفة لكل شريحة. تم انشاء تقسيمًا غير متماثل بين الشرائح في نفس الربع. تكتمل التعبئة الكاملة للكرة من خلال تكرار التكوين في الأرباع الزوالية الثلاثة الأخرى. https://isawi.blogspot.com/2024/01/blog-post_26.html The 3D modeling result was achieved by applying descriptive geometry concepts in AutoCAD. The image displays an intriguing attempt at packing the spherical surface using central symmetry with circles of varying sizes. Specifically, three adjacent meridional segments occupy an entire quadrant of the sphere, with differing initial circle sizes creating an asymmetric division between the segments within the same quadrant. Full coverage is accomplished by replicating this configuration in the other three meridional quadrants of the sphere. In addition to the three main segments, the image includes a series of secondary circles arranged to be tangent to the circles of each pair of adjacent segments. This complex packing adheres to precise geometric logic, akin to classical tangency problems, contributing to a coherent and dynamic structure. Il risultato della modellazione 3D è stato ottenuto applicando i concetti della geometria descrittiva nel programma AutoCAD. L’immagine mostra un tentativo interessante di packing della superficie sferica utilizzando la simmetria centrale di cerchi di dimensioni diverse. Nello specifico, tre spicchi meridiani adiacenti occupano un intero quartile della sfera, con cerchi iniziali di dimensioni variabili che creano una suddivisione asimmetrica tra gli spicchi all’interno dello stesso quartile. La copertura completa si ottiene replicando questa configurazione negli altri tre quartili meridionali della sfera. Oltre ai tre spicchi principali, l’immagine include una serie di cerchi secondari disposti in modo da risultare tangenti ai cerchi di ogni coppia di spicchi adiacenti. Questo packing complesso riflette una logica geometrica rigorosa, simile ai problemi classici di tangenza, contribuendo a una struttura coerente e dinamica. author= Hasanisawi|Hasanisawi |
![]() |
![]() |
15 |
![]() |
the works of the student Maram Tarawneh |
To achieve this, it is important to teach descriptive geometry in a gradual manner, starting with the basic concepts and gradually progressing to more complex concepts. This can help students understand the concepts better and apply them more effectively.
It is also important for students to solve many different problems in descriptive geometry. This can help students develop their understanding of the subject and apply it effectively.
The teacher should provide students with all the data, suggestions, analyses, illustrations, and practical solutions necessary to solve various engineering problems. This can help students understand the concepts better and apply them more effectively.
It is also important to pose many additional problems for students. These problems can help students develop their creativity and apply geometric concepts in different ways.
Dr. Hasan ISAWI
https://isawi.blogspot.com/2024/01/13-14.html![]() |
15 |
![]() |
14 |
![]() |
15 |